钢研纳克江苏检测技术研究院有限公司
测试范围:2-255amu功率:600-1600W连续可调测量精度:0.5-1.1amu型号:Plasma 1000矩管材质:石英生产厂家:钢研纳克
Plasma 1500ICP-AES测定绿茶中的二十种无机元素
前言
绿茶我国被誉为“国饮”, 不仅具有提神清心、解暑、消食化痰、去腻减肥、清心除烦、醒酒、生津止渴、降火明目、止痢除湿等药理作用,还对现代疾病,如辐射病、心脑血管病、等疾病,有一定的药理功效。绿茶具有较高的营养价值:1、绿茶可以补充人体需要的多种维生素; 2、绿茶可以补充人体需要的矿物质元素, 绿茶中含有人体所需的大量元素和微量元素,大量元素主要是磷、钙、钾、钠、镁、硫等,微量元素主要是铁、锰、锌、硒、铜、氟和碘等;3、绿茶可以补充人体需要的蛋白质和,绿茶中的种类丰富,多达25种以上,其中的异亮氨酸、亮氨酸、赖氨酸、苯丙氨酸、苏氨酸、缬氨酸,是人体必需的八种中的六种。
绿茶中无机元素的国标方法以原子吸收、原子荧光和光度法为主,近年来随着电感耦合等离子体光谱和质谱技术的发展,许多标准逐渐被电感耦合等离子体光谱和质谱技术取代,尤其是跟国际接轨比较紧密的进出口贸易行业,大部分商品茶叶的用到ICP技术。本文在纳克生产的高分辨率顺序扫描ICP光谱仪上测定了绿茶中二十几种无机营养元素和有害重金属元素,方法快速简便。
实验
本实验对GBW10052(GSB-30 绿茶)国家标准物质进行了测定。
样品前处理
准确称取1.000g试样,加硝酸5mL,双氧水2mL,低温(80℃)预消解样品,待样品激烈反应完后,放入微波炉中,180℃消解10min,25mL容量瓶定容。
仪器
Plasma1500型电感耦合等离子体原子发射光谱仪简称ICP-AES,是我公司推出的单道顺序扫描光谱仪,本应用报告的所有测量结果均来自这种ICP光谱仪。相对于由中阶梯光栅分光系统和固体器组成的ICP光谱仪(即全谱仪),单道顺序扫描光谱仪具有更低的检出限,更高的分辨率和灵敏度,较小的基体效应,同时此仪器配备功能强大界面友好的分析软件,友好的人机界面,强大的数据处理功能,对输出数据可随机打印,也可自动生成Excel格式的结果报告。仪器的工作参数见表1:
表1 Plasma 1000 ICP-AES操作参数
功率 1.15 Kw
冷却气流量 18.0 L/min
辅助气流量 0.8 L/min
载气流量 0.2 MPa
蠕动泵泵速 20 rpm
观测高度 12 mm
分析结果
方法的检出限
由消解空白的3倍标准偏差测定方法的检出限,选择的分析波长和方法的检出限见表2。
表2 Plasma 1000 ICP-AES元素波长及方法的检出限(µg/g)
元素 波长/nm 检出限(µg/g) 元素 波长/nm 检出限(µg/g)
Pb 220.40 0.1 Zn 206.200 0.02
Cr 267.716 0.002 Cd 214.438 0.01
Y 371.030 0.003 Mo 202.030 0.07
Rb 421.556 0.004 B 208.893 0.005
Ni 231.604 0.04 Sr 421.600 0.002
Fe 238.204 0.03 Cu 324.754 0.02
Ba 233.527 0.05 P 213.618 0.4
Mg 279.553 0.03 Ca 393.366 0.01
Mn 257.610 0.005 Hg 194.227 0.05
Sn 283.999 0.1 Sb 231.147 0.1
样品分析
对GBW10052(GSB-30 绿茶)标准样品中的主量、微量、痕量元素进行分析,分析结果见表3,结果表明,大部分元素分析结果与标准样品参考值一致,说明此方法准确、可靠。
表3 绿茶GBW10052的测定结果(µg/g)
元素及波长 Pb220.353 Zn202.548 Cr267.716 Cd214.438 Y371.030
绿茶(µg/g) 1.5 34.5 0.81 0.077 0.50
1.5 35.9 0.94 0.073 0.54
1.6 33.9 0.93 0.072 0.55
1.8 36.1 0.85 0.078 0.49
参考值及不确定度(µg/g) 1.6(0.2) 35(2) 0.92(0.20) 0.076(0.004) 0.52(0.03)
元素及波长 Mo202.030 Rb421.556 B208.893 Ni231.604 Sr421.600
绿茶(µg/g) 0.10 82 13.2 5.1 34.8
0.13 91 14.5 5.3 35.6
0.12 89 15.1 5.5 36.9
0.12 95 13.9 5.7 37.2
参考值(µg/g) 0.11(0.02) 89(9) 14.1(1.2) 5.4(0.4) 36(2)
元素及波长 Fe238.204 Cu324.754 Ba233.527 P213.618 Mg279.553
绿茶(µg/g) 321 25.2 41.9 2.83 2.15
335 23.9 43.5 2.90 2.25
329 24.8 42.6 2.79 2.21
340 23.5 39.9 2.72 2.19
参考值及不确定度(µg/g) 322(23) 24(1) 41(4) 2.8(0.1) 2.20(0.08)
元素及波长 Ca393.366 Mn257.610
绿茶(mg/g) 11.8 1.12
12.4 1.19
12.2 1.23
11.9 1.15
参考值及不确定度(mg/g) 12.1(0.3) 1.17(0.06) - - -
结论
纳克生产的高分辨率顺序扫描ICP光谱仪,相对于中阶梯光栅和固体器相结合的全谱仪,具有更低的检出限,更高的分辨率和灵敏度,较小的基体效应,用于分析食品中的痕量、**痕量元素较具优势。
本方法通过简单、快速的硝酸、双氧水消解,使用纳克的Plasma 1000对绿茶中的无机元素Pb、Zn、Cr、Cd、Y、Mo、Rb、B、Ni、Sr、Fe、Cu、Ba、P、Mg、Ca、Hg、Sn、Sb、Mn等进行了分析,其中Hg、Sn、Sb由于含量太低低于仪器下限未检出,其余各元素的测定值与标准值基本吻合,对于快速绿茶中的无机元素具有重要意义。
微波消解-ICP-AES法测定塑料中Pb、Hg、Cd、Cr
胡 月 刘 颂 彭 霞 周 伟 李美玲 沈学静
(钢研纳克技术有限公司,北京 100094)
摘要: 研究采用微波消解法进行溶样、ICP-AES测定塑料中Pb、Hg、Cd和Cr含量的方法。选择了合适的分析谱线。结果表明,Pb、Hg、Cd、Cr的检出限分别为0.02mg/L、0.02mg/L、0.002mg/L、0.002mg/L,回收率为86%~107%。该方法适用于塑料中Pb、Hg、Cd和Cr含量的快速分析。
关键词:微波消解;ICP-AES;塑料;Pb;Hg;Cd;Cr
塑料已经广泛地应用到各行各业,与人们的生活息息相关。然而由于塑料的生产工艺等原因不可避免地使用了有害的重金属,其中的Pb、Hg、Cd、Cr等重金属的危害已引起了**的重视,欧盟已各种严厉的政策、法令来限制塑料中Pb和Cd的使用,如RoHS指令、包装指令、玩具指令等。因此, 许多出口产品中的塑料部件均需要进行Pb、Hg、Cd、Cr含量的测定。
相对于传统的湿式消解法和马弗炉高温灰化法, 微波消解作为一种较新的样品处理技术具有一系列的优点:1)加热快、升温高、消解能力强,大大缩短了溶样时间;2)消耗酸溶剂少,空白值低;3)避免了挥发损失和样品玷污,回收率高,提高了分析的准确度和精密度。
相对于传统仪器原子吸收法, ICP-AES以其检出限低,精密度好,动态范围宽,分析速度快等优点在塑料制品分析领域的应用已有报道 [1-6]。本文研究了使用国产单道扫描ICP光谱仪测定塑料中的Pb、Hg、Cd、Cr,结果令人满意。
1 实验部分
1.1 仪器及参数
Plasma1000单道扫描电感耦合等离子体光谱仪(钢研纳克技术有限公司);高纯氩(纯度≥99.999%),光栅为3600条/mm。参数设置:功率1.15 Kw;冷却气流量18.0 L/min,辅助气流量0.8 L/min,载气流量0.2 L/min;蠕动泵泵速20 rpm;观测高度距功率圈上方12 mm;同轴玻璃气动雾化器,进口旋转雾室,三层同轴石英炬管,中心管2.0 mm。
EXCEL 全功能型微波化学工作平台(上海乞尧)。
1.2 试剂
硝酸,ρ≈1.42 g/ml,优级纯,北京化工厂;过氧化氢,ρ≈1.13g/ml,优级纯,北京化工厂;Pb、Hg、Cd、Cr的标准溶液质量浓度均为1000 µg/ml,国家钢铁材料测试中心;所用溶液用水均为二次去离子水。
1.3 样品处理
称取已粉碎的塑料试样0.1 g (精确至0.0001g) 于聚四氟乙烯微波消解罐中, 加入10 mL HNO3、2mL H2O2溶液, 按照设定的消解程序(如表1所示)进行微波消解, 为避免反应过于剧烈, 采用程序升温的方法进行消解。消解完毕后,转移定容至50 mL, 待测。随同做试样空白试验。
表1 样品微波消解程序
升温程序 压力/MPa 温度/℃ 保持时间/min
2 结果与讨论
2.1 分析谱线的选择
对于同一种元素, ICP-AES 可以有多条谱线进行,但是由于基体和其他元素的干扰,并不是所有的谱线都适用。进行光谱扫描后,根据样品中各待测元素的含量及谱线的干扰情况,选定灵敏度适宜、谱线周围背景低、且无其他元素明显干扰的谱线作为元素的分析线,结果见表2。
表2 各元素分析线
元素 Pb Hg Cd Cr
波长/nm 220.353 253.652 228.802 267.716
2.2 方法的检出限
以空白溶液测定10次的标准偏差的3倍所对应的浓度作为检出限。各元素的检出限见下表3。由表可见,各元素的检出限均较低,可以满足塑料产品的日常要求。
表3 元素的检出限
元素 Pb Hg Cd Cr
检出限/(mg/L) 0.02 0.02 0.002 0.002
2.3 实际样品的测定
对实际塑料样品按照本文方法进行分析,并将测定结果与相应的参考值进行比对,结果表明,各元素的测试结果与参考值基本一致。
表4 测定结果与参考值对比
样品 元素 测定结果w/% 参考值w/%
1 Pb 0.0018 0.0017
Hg 0.0010 0.0012
Cd 0.0012 0.0011
Cr 0.0030 0.0032
2 Pb 0.0031 0.0030
Hg 0.0015 0.0014
Cd 0.0030 0.0031
Cr 0.0018 0.0017
2.4加标回收试验
按照选定的ICP工作条件和微波消解程序, 在样品中分别加入Pb、Hg、Cd、Cr混标溶液进行加标回收试验, 回收试验结果列于表5。由表5可知, 待测元素Pb、Hg、Cd、Cr的加标回收率在86%~107%, 表明本方法准确可靠。
表5 方法的加标回收
元素 本底值 加标量 测定均值 回收率
/(mg /L) /(mg /L) /(mg /L) /%
Pb 3.4 3.0 6.2 93.3
Hg 2.4 3.0 5.0 86.7
Cd 2.2 3.0 5.1 96.7
Cr 6.4 3.0 9.6 106.7
3 结论
对塑料进行微波消解前处理, 采用高灵敏度的单道扫描型ICP- AES成功测定了其中Pb、Hg、Cd、Cr含量,此法简便、准确, 适用于塑料中Pb、Hg、Cd、Cr的快速测定。
参考文献:
[1] 陈树娣, 黄小龙, 熊怡佳等. ICP- AES测定塑料中的锑铍钴钒[J].广州化工(Guangzhou Chemical Industry),2011,39(7):119-120.
[2]金献忠, , 杭纬等. 低压微波消解- ICP-AES 法测定聚氯乙烯塑料及其制品中的Pb、Cd、Cr 和Hg[J]. 分析试验室Chinese Journal of Analysis Laboratory),2007,26(8):80-83.
[3]鲁丹,赵珊红,鲍晓霞等. 端视ICP-AES法测定食品用塑料包装容器在四种食品模拟物中有害元素迁移量[J]. 食品科技 (Food Science and Technology),2012,37(1):288-292.
[4]钟志光, 黄勇, 张海峰等. 微波消解 DUO-ICP-AES测定电子电气产品塑料中的铅、镉、铬和汞的方法研究[J]. 塑料 (Plastic) 2007,36(1):96-99.
[5]李波,林勤保,宋欢等. 微波消解-ICP-AES 测定食品塑料包装中钛、铅、铬和镉[J]. 化学研究与应用
(Chemical Research and Application),2011,23(2):252-256.
[6]卫碧文, 缪俊文, 龚驷扬. 微波消解ICP-AES 法测定玩具塑料中镉[J]. 理化检验-化学分册 (PTCA ( PART B: CHEMICAL ANALYSIS)),2004,40(11):640-642.
ICP-AES法测定石墨中的铁元素
摘要: 通过实验研究,建立了基于钢研纳克全谱电感耦合等离子体发射光谱仪Plasma 2000测定石墨中Fe的分析方法。石墨放于铂金坩埚于马弗炉中加热到1000 ℃完全灰化。若完全烧尽,加入一定量HCl,转移,定容;若坩埚中有硅残余,则加入一定量HCl和HF,转移,定容。采用电感耦合等离子体发射光谱法测定石墨中的Fe元素。结果表明,Fe元素的检出限在0.3 µg/L,两个石墨样品中铁的测定值分别为1.68μg/g、9.19μg/g,方法适用于石墨中Fe元素的测定。
关键词:全谱;电感耦合等离子体发射光谱法;石墨;铁
石墨是我国优势非金属矿产之一,其储量和产销量居世界**。石墨系列产品已经广泛应用于冶金、机械、电子、化工、轻工、**、*及耐火材料等行业,是当今科技发展必不可少的重要非金属原料[1]。石墨作为电池材料的负极也被广泛使用,铁元素的存在会影响电池性能,因此铁的测定非常重要。我国于1995年制定了石墨化学分析方法国家标准GB/T3521-95,项目仅包括石墨产品中水分、挥发分、固定碳、硫和酸溶铁的分析[2]。标准中使用比色法测定铁,对实际现场测试不适用,ICP-AES法已广泛应用在地质、化工、环保等领域。本文通过实验研究,建立了基于国产全谱型电感耦合等离子体发射光谱仪ICP-2000快速、准确测定石墨中铁元素的分析方法。
1 实验部分
1.1 仪器及工作条件
Plasma 2000 电感耦合等离子体发射光谱仪
观测方式:径向观测
进样系统:**进样系统
分光系统:中阶梯光栅与棱镜交叉色散结构,全谱瞬态直读
器:大面积背照式CCD芯片,高紫外**化效率,宽动态范围
光源:高效固态射频发生器,小体积高效率
Plasma2000全谱型电感耦合等离子体光谱仪(钢研纳克技术有限公司);高纯氩(纯度≥99.999%)。参数设置:功率1.15 kW;冷却气流量15.0 L/min,辅助气流量0.5 L/min,雾化气流量0.5 L/min;蠕动泵泵速20 rpm;雾化器及雾室、三层同轴炬管。
1.2 ICP-AES仪器工作条件
盐酸,ρ≈1.19 g/ml,优级纯,北京化工厂;氢氟酸ρ≈1.15 g/ml,优级纯,北京化工厂; Fe的标准溶液质量浓度均为1000 µg/ml,国家钢铁材料测试中心;所用溶液用水均为二次去离子水。
1.3 样品处理
称取1.0 g(精确至0.0001 g)试料于铂坩埚中,置于马弗炉中,升温到1000 ℃,灼烧4 h以上至试料完全灰化,冷却后取出,在铂坩埚中加入3 ml盐酸,电热板稍微加热后,将溶液转移到聚四氟乙烯烧杯中,聚四氟乙烯烧杯置于控温电热板上加热至试料完全溶解。取下,稍冷后滴加1 ml氢氟酸。冷却后转移至100 ml塑料容量瓶中,加水至刻度,混匀。在等离子体原子发射光谱仪上测定,随同试料做试剂空白。
2 结果与讨论
2.1 样品的取样量
为保证取样的代表性、均匀性及分析方法的准确性,石墨样品取样量实验得结果表明,对于质量分数在99.99 %以上石墨,由于杂质元素的质量分数一般在0.01 %以下,称样量为1.0 g为宜。
2.2 溶样用酸的选择
样品灼烧后采用盐酸、氢氟酸溶解样品中的灰分。若测定硅和硼,加氢氟酸时要注意溶液温度,防止硅或硼形成氟化硅或氟化硼而溢出,温度要控制在100 ℃以下。
2.3 分析谱线的选择
石墨中的主要成分在高温灰化时已经挥发除去,*考虑基体元素对待测元素的干扰。实验中利用ICP-AES的谱线轮廓图,确认待测元素痕量元素扣背景的位置,从而有效消除待测元素之间的干扰。此外,本实验依据待测溶液中铁元素的含量,选择灵敏度高、谱线背景低、无其它元素严重干扰的谱线作为分析线(表1)。
表1 元素分析线波长
元素 Fe
波长/nm 259.9
2.4 方法检出限和定量限
以空白溶液连续测定11次的标准偏差的3倍所对应的质量浓度为检出限;以空白溶液连续测定11次的标准偏差的10倍所对应的质量浓度为定量限,结果列于表2。
表2 方法检出限和定量限
元素 Fe
检出限/(µg/L) 0.3
定量限/(µg/L) 1.0
2.5 方法准确度和精密度实验
采用加标回收率法验证方法的准确度。按上述实验方法和选定的仪器条件,称样后准确加入铁标液,进行加标回收率实验,结果列于表3,回收率为103%。使用实际样品测定精密度见表4。
表3 方法准确度实验
元素 Fe
加入量/(µg/L) 10.0
回收量/(µg/L) 10.3
回收率/% 103
表4 实际石墨样品结果
样品编号 Fe测定值(μg/g) 平均值(μg/g) SD(μg/g)
1# 1.58,1.69,1.77 1.68 0.10
2# 9.27,8.78,9.51 9.19 0.37
3 结论
本文建立了ICP-AES快速测定石墨中铁的方法。方法灵敏度高、结果准确、分析速度快,适合石墨产品中铁的分析。
参考文献:
[1] 李英堂,田淑艳,汪美凤. 应用矿物学[M].北京: 科学出版社, 1995.
[2] GB/T3521-95 石墨化学分析方法[S] .
ICP-AES法测定活性炭中的砷、硒、锑、铅、铬
(钢研纳克技术有限公司, 北京 100094)
摘要:介绍了一种预前灰化处理样品测定活性炭产品中砷、硒、锑、铅、铬含量的电感耦合等离子体发射光谱方法。通过样品的称样量实验、基体干扰考察以及分析谱线选择等,确定了分析条件。结果表明,砷、硒、锑、铅、铬的检出限分别为0.04 mg /L、0.02mg /L、0.06 mg /L、0.10 mg /L、0.009 mg /L;加标回收率为90 %~110%。该方法适用于活性炭产品中砷、硒、锑、铅、铬等元素含量的快速分析。
关键词:电感耦合等离子体发射光谱法; 活性炭;砷、硒、锑、铅、铬
活性炭产品广泛应用于食品卫生、医药、环境保护、饮用水处理、溶剂回收及气体的分离、净化等诸多领域[1] 。其中砷、硒、锑、铅、铬等有毒元素的含量应小于对处理水和处理液有影响的程度, 因此准确测定和控制这些有毒元素的含量就显得尤为重要。
相对于传统仪器AAS法[2], ICP-AES具有检出限低、精密度好、动态范围宽、分析速度快等优点,在活性炭分析领域已有报道[3-6],但是使用ICP-AES同时测定砷、硒、锑、铅、铬元素含量还没有成熟的方法。本文研究了使用国产单道扫描ICP光谱仪测定活性炭中的砷、硒、锑、铅、铬等元素的方法并成功应用于实际样品的。
1 实验部分
1.1 仪器和参数
Plasma1000单道扫描电感耦合等离子体光谱仪(钢研纳克技术有限公司);高纯氩(纯度≥99.999%),光栅为3600条/mm。功率1.15 Kw,冷却气流量18.0 L/min,辅助气流量0.8 L/min,载气流量0.2 L/min,蠕动泵泵速20 rpm,观测高度距功率圈上方12 mm,同轴玻璃气动雾化器,进口旋转雾室,三层同轴石英炬管,中心管2.0 mm。
1.2 试剂
硝酸,ρ≈1.42 g/ml,优级纯,北京化工厂;盐酸,ρ≈1.18 g/ml,优级纯,北京化工厂;As、Se、Sb、Pb、Cr的标准溶液质量浓度均为1000 µg/ml,国家钢铁材料测试中心;所用溶液用水均为二次去离子水。
1.3 样品处理
准确称取经105 ℃烘干、研细的活性炭样品2.000 g于瓷皿中,加入1.0g Mg(NO3)2·6H2O混匀,上面覆盖1.0g MgO,于600℃灼烧3h以上,取出。转入100mL烧杯中,加水至20 ml,加(1+1)HCl 20ml、(1+1)HNO3 5 ml,放置在电热板上低温加热溶解残渣,溶液缩小体积后转入50 mL容量瓶中,定容。双层慢速滤纸干过滤,收集滤液到容量瓶中,待测。同时做空白。
2 结果与讨论
2.1 样品的取样量
活性炭样品的取样量应该由样品中各元素含量的多少及方法的灵敏度来综合确定。为保证取样的代表性、均匀性及分析方法的准确性,本研究对活性炭样品取样量进行了实验。此外,由于所测元素砷、硒、锑、铅、铬的质量分数一般在0.01 %以下,含量较低,因此,选择2.0 g的称样量。
2.2分析谱线的选择
活性炭中的主要成分在高温灰化时已经挥发除去,因此,选择分析谱线时只需考虑保护剂中镁元素对待测元素的干扰。利用ICP-AES的谱线轮廓图,确认待测元素痕量元素扣背景的位置,可以有效消除干扰。本实验依据待测溶液中各元素的含量,选择灵敏度高、谱线背景低、无其它元素严重干扰的谱线作为分析线,见表1。
表1 各元素分析线波长
元素 As Se Sb Pb Cr
谱线/nm 193.759 196.090 206.833 220.353 267.716
2.3方法的检出限
以空白溶液测定10次的标准偏差的3倍所对应的浓度作为检出限,各元素的检出限见下表。由此可见, 此检出限可以满足日常要求。
表2 各元素的检出限
元素 As Se Sb Pb Cr
检出限/(mg/L) 0.04 0.02 0.06 0.10 0.009
2.4 实际样品分析
对活性炭实际样品按照本文方法进行分析,分析结果见表3.
表3 实际样品分析结果
样品 含量w/%
As Se Sb Pb Cr
1 0.0009 0.0001 0.0003 0.0007 0.0007
2 0.0008 0.0001 0.0001 0.0005 0.0007
3 0.0007 0.0001 <0.0001 0.0004 0.0008
2.5加标回收试验
本文采用加标回收率法进行了方法准确度实验。按上述实验方法和选定的仪器条件,称样后准确加入各待测元素,进行加标回收率实验,结果列于表4,各元素回收率为90 %~110%。
表4 方法的加标回收
元素 本底值 加标量 测定均值 回收率
/(mg /L) /(mg /L) /(mg /L) /%
As 0.32 0.20 0.50 90
Se 0.04 0.20 0.23 95
Sb 0.12 0.20 0.30 90
Pb 0.20 0.20 0.42 110
Cr 0.25 0.20 0.46 105
3 结论
使用灰化预前处理样品测定活性炭中砷、硒、锑、铅、铬含量的电感耦合等离子发射光谱法方法, 具有样品前处理简便、有效待测元素损失较少、分析精密度高及分析速度快等优点,适用于活性炭中砷、硒、锑、铅、铬等元素的准确、快速测定。
参考文献:
[1] 许国斌. 粒状活性炭的制造与应用[J]. 新型碳材料(New Carbon Materials),1986, ( 2) : 13- 26.
[2] 许雪笙, 陈正华. 活性炭中痕量砷元素的测定[J] .生物质化学工程(Biomass Chemical Engineering),2007,41 (4):43-45.
[3] 张园力,刘东艳. 氢化物发生-ICP-AES 法测定活性炭中的砷[J]. 光谱实验室(Chinese Journal of Spectroscopy Laboratory),2000,17(5):536-538.
[4] 张吉才,张利民. ICP-AES 测定果核活性炭中的磷[J]. 光谱实验室(Chinese Journal of Spectroscopy Laboratory),2009,26(2):215-217.
[5] 马桂英,张利民. ICP-AES 测定果壳活性炭中的锰[J]. 光谱实验室(Chinese Journal of Spectroscopy Laboratory),2009,26(2):232-233.
[6] 杨红晓, 群. ICP-AES法测定活性炭负载型催化剂中铂、镍的含量[J]. 应用化工(Applied Chemical Industry),2010,39(11).
-/gbahabd/-