钢研纳克江苏检测技术研究院有限公司
测试范围:2-255amu功率:600-1600w连续可调测量精度:0.5-1.1amu连续可调型号:PlasmaMS 300矩管材质:石英生产厂家:钢研纳克
钢研纳克技术股份有限公司是国内早使用和开发ICP光谱仪和ICP-MS的科研单位之一,依托国家钢铁材料测试中心,培育了一批ICP光谱仪和ICP-MS应用和仪器*。ICP光谱仪产品标准GB/T 36244-2018和ICP-MS仪器计量检定规程GB/T 34826-2017的起草单位。国家重大科学仪器专项《ICP痕量分析仪器的研制》牵头单位,**中国ICP系列分析仪器的发展。拥有30多年ICP方法开发经验,懂ICP应用的国产ICP&ICP-MS制造商。免费培训,解决客户应用方法的难题,让您ICP光谱仪和ICP-MS用的更好!央企品牌,上市公司,品质之选!欢迎来电洽谈.
电感耦合等离子体质谱法测定地质样品中的铷
铷属稀散元素,在*、航空航天、生物工程技术、医学、能源和环境科学等领域有广泛的应用[1]。铷量的检 测可为地质找矿、选矿冶金、材料加工等行业的生产研究以及医学中疾病的诊断提供重要依据。目前,国内外分 析测试铷的方法主要有原子吸收光谱法"、原子发射光谱法"、X-荧光光谱法叵7]和中子活化法[8]等,分析对象 涉及环境水样和生物样品,对地质矿样中铷的分析尚鲜见报道。上述方法中除中子活化法外,其他方法的检出限 均较高。现普及的原子吸收和发射光谱法分析铷时,须另加入镧盐,即便如此,对某些岩石、土壤样品仍得出较 实际值偏高的结果。中子活化法检出限虽低,但因仪器十分昂贵且放射性防护要求较高,使其难以普及。有关熔 融法-电感耦合等离子体质谱分析测试铷[9]的研究已有报道,但熔融法引入了大量盐类,不利于电感耦合等离子 体质谱仪的测定,且大大影响了分析方法的检出限。本文提出的酸溶-电感耦合等离子体质谱分析测试铷的方法, 具有准确度和精密度高,检出限低,干扰少,分析流程简单快速等特点。
质谱干扰对铷测定的影响
除了基体效应等非质谱干扰外,质谱干扰也是ICP-MS分析常遇到的问题。在ICP-MS分析中,即便较微量的 同量异位素的存在,也会干扰结果。
铷有85Rb和87Rb两种同位素,85Rb没有同量异位素,但87Rb有同量异位素87Sr。事实上,地质样品中常含锶元素。
由于干扰元素锶的两个**同位素87Sr和88Sr的丰度分别为已知7.02%和82.56%,且88Sr不存在同量异位素 的干扰,所以通过测量88Sr+离子流的强度进而求出87Sr+的离子流强度,然后再从所测得的87处的总离子流强度 中将87Sr+的离子流强度减去,即得87Rb+净离子流强度。从而得出87Rb的校正公式为净离子流87Rb=离子流(87Rb+87Sr) -(离子流 88Srx 7.02/82.56 )。
本文采用HCI-HNO3-HF-HCIO4敞口酸溶消解样品,用ICP-MS测定铷量的方法,检出限低,干扰少,大大简 化了分析流程,节省了分析时间,在土壤、岩石等地质样品中铷的测定中有实际意义。
钢研纳克电感耦合等离子体质谱仪PlasmaMS 300 仪器特点
1. 石英、耐氢氟酸等丰富多样的进样系统;分立式矩管,便于拆卸维护;可选配半导体制冷进样装置和自动进样系统。
2. 27.12MHz全固态RF发生器,实现较高的稳定性;自动匹配速度快,保证了点火成功率
3. 双锥接口,可在真空状态下直接拆卸维护
4. 大范围精确可调的三维平台,实现矩管全自动定位和校准
5. 双离轴离子传输(偏转)系统,去除不带电粒子,保证低噪声和高灵敏度
6. He气碰撞池匹配高性能质量流量控制器,有效去除多离子干扰
7. 高通量的长四较杆,质量范围2-265amu,分辨率<0.8amu;应用的DDS技术,实现自动频率匹配,保证离子有效筛选
8. 双模式器,脉冲计数和模拟计数,高达9个数量级线性范围
9.两只独立分子泵组合而成的高性能双涡轮分子泵真空系统和全自动监控系统,确保稳定性和灵敏度
10. 无处不在的屏蔽处理,保护实验人员安全和仪器稳定
11. 通过多项可靠性实验的考验,保证仪器运行和稳定
12. 人性化的工作软件 PlasmaMS 300 钢研纳克
中文软件界面,符合中国人操作习惯,用户灵活保存方法
全面的状态监控输出,错误主动提示,问题一目了然,较大方便日常维护
带有LIMS接口,满足第三方实验室的需求
ICP-MS测定冶金材料中的痕量元素
本文介绍了应用电感耦合等离子体质谱法(ICP-MS)测定钢铁材料中各种痕量元素的方法,就分析过程 中试样量、试样分解方法、工作曲线、内标、空白、记忆效应、干扰消除方法等需要注意的事项进行了 一些讨论,为ICP-MS在冶金分析中的应用提供了一些思路。
未来钢铁企业生产技术向纯净化发展,要求对钢中更低含量范围的合金元素进行有效监控,引申出对各种原 材料和产品中痕量、**痕量合金元素的要求也不断被提出。例如对高磁感取向硅钢中影响电磁性能的Al、 Mo、V、Ti。Nb、Bi、Se等元素、帘线钢中的Ti等元素要求精度达到ppm级,这是常规的ICP-AES分析无 法实现的。而ICP-MS技术以其较低的检出限为解决这些痕量分析问题提供了一个有利的工具,因此其在钢铁行业 中的应用也越来越广泛。但这同时也是对ICP-MS技术的一项挑战。首先,相对于可以直接分析的液体试样,钢铁 材料进行ICP-MS分析必需先分解试样,而钢铁和合金中往往存在难以分解的氧化物、碳化物、氮化物等给试样分 解造成困难。其次,分解试样时试样由固体转化为溶液是一个稀释的过程,既会降低测量的灵敏度又会带来试剂 空白。此外,金属试样分解后的溶液中存在的高基体会产生严重的基体效应,引起灵敏度降低、信号漂移,还会 污染仪器。要想得到准确的分析结果,这些问题都必需予以解决。
ICP-MS测定对被测试样溶液中总溶解固体量(TDS)有要求,虽然许多仪器允许的TDS理论值达到1%以上, 但在实际钢铁试样分析中溶液的TDS**过0.05%时,由于盐分在采样锥口的沉积,即会产生明显的信号漂移。虽 然这一漂移可以采用内标校正进行消除,但过大的漂移量会增大校正误差,并且基体过高会带来较多的残留污染 仪器,因此不建议使用TDS过高的试液进行分析。而钢铁材料的ICP-MS分析标准中通常采用TDS为0.1%溶液 进行测定,即0.1 g试样配制成100 mL溶液。
与ICP-AES测定的试样分解方法类似,ICP-MS分析也可采用酸溶、碱熔、高压消解、微波消解等方法分解试样。 同样出于控制溶液中TDS的考虑,分解试样**采用试剂用量更少的酸溶法,如非必要一般不采用碱熔法分解试 样。由于Cl、S、P在等离子体中易形成多原子离子峰的干扰,例如40Ar35Cl干扰75As,35Cl16O干扰51V,32S16O干 扰48Ti,31P16O干扰47Ti等,在分析试样时对使用的无机酸的种类需仔细斟酌。通常**使用HNO3,因为环境中 已经有氮气、水、氧气存在,使用硝酸,并不会带来更多的污染。
对于碳含量低的普通低合金钢试样可以直接使用预加热的稀硝酸中温快速分解,这样加快了分解速度,减少 了加热时间,可有效的防止试样中高含量的硅析出。对于碳含量低的不锈钢可采用王水分解试样。对于难分解的 试样如含碳高的合金钢、不锈钢或测定Al、B、Nb等易形成难分解的氧化物、碳化物、氮化物的元素时,可采用 高压消解或微波消解的方法,以提高反应温度和压力从而加快反应速度,使试样分解。而在测定Nb、Ti、W等易 水解元素时,需要使用氢氟酸做为络合剂,同时为了减少试剂带来的干扰和污染,通常直接使用氢氟酸系统测量 而不进行高氯酸冒烟操作。对于难分解的矿石类试样通常也可采用高压消解或微波消解条件下的盐酸、硝酸、氢 氟酸分解试样,以降低试剂空白和干扰。
工作曲线
ICP-MS分析是一种相对的测量方法,需要通过工作曲线换算来得到测量结果。如果有定值的标准样品,可以 很方便的使用其直接建立工作曲线。但遗憾的是,目前钢铁、合金有色金属标准样品中对痕量元素定值较少,且 不全面,很难得到一条完备的工作曲线,往往需采用标准溶液来配制工作曲线溶液。配制工作曲线溶液时除了需 要准确的加入相应的标准溶液外,还需要注意基体的一致性,基体的种类和量的多少都会对信号的灵敏度会产生 影响,这种影响在基体浓度较高时尤其明显。因此对于钢铁试样通常需要用于试样相同质量的高纯铁进行基体匹配。
对于基体复杂的试样,一种简便的方法是采用标准加入法通过外推来计算试样中待测元素的含量。在ICP-MS 的定量分析中,标准加入法是一种十分有效的分析方法。因为与高背景的ICP-AES法不同,ICP-MS的背景值较低 接近于零,可以认为工作曲线都是通过“零”点的,因此通过工作曲线的截距和斜率的比值可以很方便的求得结果。
另外一个值得注意的问题是,混合标准溶液的使用。由于ICP-MS法可以同时测定多种元素(虽然它通常是一 台扫描型的仪器,但由于扫描的速度特别快,只有几十毫秒,近似于“同时”测定),往往需使用多元素的混合 标准溶液。配制混合时需要注意各自使用的溶剂是否会对其它待测元素引入干扰,例如Sn标准溶液通常采用20% 盐酸介质,会对As和V的测定会产生一些干扰。此外,由于ICP-MS测定使用的工作曲线溶液浓度很低,容易被 容器壁吸附造成损失,因而通常可以保存时间不**过1周。
5内标
为了得到理想的下限,在钢铁材料分析中,通常并不使用TDS小于0.05%的溶液进行测量,这时由于取 样锥孔积盐将不可避免的会造成信号强度的降低。为了校正这种基体效应引起的信号漂移以及环境因素造成的信 号波动,可以采用加入内标元素的方法。内标元素通常为试样中不含有的,并且很少测量的元素,如Be、Sc、Y、 Rh和Re等,测量时应根据待测元素选择质量数接近的内标元素,如需测量多个元素需选择覆盖质量数范围的几 种内标元素进行组合,常用的如Be、Y; Be、Sc、Y、Re混合内标等。
进行痕量和**痕量元素分析时,试剂空白值是必需着重考虑影响因素。不同种类的酸除了可能引起对测量谱 线的干扰外,还会存在不同大小的试剂空白。这些空白值可以采用标准加入法来测量,然后根据需要进行扣除。 为了降低空白的影响,采用的试剂应具有尽量高的纯度,通常分析中至少需采用优级纯试剂,而采用亚沸蒸馏的 方法可以进一步降低试剂中多种元素的空白值。
记忆效应
在进行金属材料分析时,高基体带来的记忆效应也是困扰分析者的一个严重的问题。对钢铁、合金、有色金属、 高**属等的分析时,高浓度的基体成份不可避免的会对仪器系统,包括泵管、雾化器、雾化室、炬管、接口锥、 甚至离子透镜等组件造成污染。记忆效应的强弱和分析物的化学性质有关,有些元素如Cu、Cr、Ni、Fe等在装置
表面的吸附较弱,而P、B、Sn等的吸附较强。Xseries II型仪器已经对记忆效应进行了优化,绝大部分元素的信 号在冲洗40秒后,即可降低至1%。以下,但对于基体污染仍需要采用合适的试剂进行较长的冲洗时间。通常可采 用稀硝酸冲洗系统除去Cu、Ni、Fe等的污染,采用稀盐酸除去Cr、Fe、Sn等的污染,而稀氨水对除去P和B的 污染较为有效。而冲洗时采用稀酸和纯水交替冲洗,洗涤的效率更高。此外为了消除记忆效应,还应及时的对仪 器各组件进行清洗,如有必要可以对离子透镜进行清洗。
8干扰消除
对于一些在ICP-MS中干扰比较严重的元素,例如56Fe受40Ar16O干扰,40Ca受40Ar干扰,75As受40Ar35Cl等, 可以采用一些特殊的方法和技术手段予以消除:
(1) 采用校正公式校正
采用校正公式消除干扰的典型的例子即是扣除40Ar35Cl对75As,这是一个十分成熟的应用,大多数商用仪器 上均已自带。为了确定As的含量,需要测定m/z=75、77、82、83处的信号,然后由下列公式计算得到75As的信号:
82Se = Im/z=82-1.00100 x 83Kr5
77ArCl = Im/z=77-(7.50/8.84)x82Se;
75 As = Im/z=75-3.13220 x 77ArCl;
通常情况下采用这一公式进行校正可以得到很好的结果,例如分析使用王水分解的不锈钢试样时。但同时也 要注意如果工作曲线溶液和试样溶液中Cl浓度差别过大,会存在较大误差,例如表1中盐酸和高氯酸溶液中As 的空白值结果。
(2) 冷焰/冷等离子体技术
应用冷等离子体技术,使仪器工作在较低的射频功率(450-750W)条件下时,等离子体炬焰的中心温度降低 为2500-3000K,此时等离子体中的Ar+、O+、N+及ArO+其它一些多原子离子的浓度显著下降,可使质谱背景显著 降低。当然,同时分析物离子的信号也会下降,特别是具有较高电离势的元素,因此该技术提高的是低质量数端 的信噪比。应用此技术,可以降低Na、Mg、K、Ca元素的检出限,特别是可以使用Ca的高丰度同位素40Ca来测量。
图3冷等离子体条件下(射频功率600 W)的40Ca工作曲线
-/gbahabd/-