光谱仪在分析的过程中,电火花燃烧样品表面会产生金属粉尘,大部分的金属粉尘都会随着氩气吹扫排到过滤罐中,然而也会有少部分金属粉尘会停留在激发室里,时间长了会堆积污染激发室和光学透镜,引起测量数据波动,误差变大,所以需要定期的清理来改善激发室环境,改善测量数据。
光谱仪在使用的过程中,会有一部分金属粉尘、金属屑、灰尘掉落到仪器内部电路模块上,如果不及时清理可能会导致电路模块短路,一些核心的电路板损坏维修费用会很高,所以需要及时的清理仪器内部灰尘,保证电路的正常运行。
一个产品在市场上有竞争力,不外乎取决于以下几方面:首先是技术的先进性,技术上有自己独到的地方;其次在于仪器的可靠性、耐用性;第三则为适用性,用户可以方便操作,仪器对操作人员的要求不高。那么,这些方面,钢研纳克1000型光电直读光谱仪做的如何呢?
关于技术的先进性,钢研纳克在研制光电直读光谱之前,一直在进行金属原位分析仪器的研制;金属原位分析也是基于火花放电原理,钢研纳克将其中的关键技术移植到了火花直读光谱中
随着使用时间的推移,光室、光学器件会发生非常微小的形变,就是这些微小的形变都会引起光路细微的漂移,从而导致仪器测试精度和准确度的改变,而且这个漂移会随着时间的延迟表现的越来越明显,如果要再次提高仪器的性能就需要人为的调整参数来修正这部分漂移,从而改善光谱仪的性能。
对于谱线的选择很大程度决定着该元素的精度,那么我们要怎么来选择合适的谱线,谱线的选择取决于以下几个因素。
1.分析仪器厂家对分析谱线的经验,知道哪条线适合所生产的光学系统和光源,所选用的谱线不受其他元素线的干扰。
2.含量范围,元素不同谱线,强度不同,所以谱线可能满足不了用户提出的含量范围,有时需要选择两条谱线。
3.元素间的相互干扰,在分析元素的谱线侧旁存在另一元素的谱线时,而且该元素的含量很高,它将会使所要分析的元素谱线强度增加。因此,得出的分析含量会比实际的高。选择谱线时要减少这种元素间干扰效应。
4.特殊的聚焦,通常由于发射谱线相互很近,有时必须采用光学系统部件进行补偿。