所有直读光谱仪都可以达到ppm级的精度吗?
直读的检测线是小于100ppm,也就是达到小数点后三位,0.001,检测的元素0.01%或以上可以检测出元素含量,可以检测精度为万分之一。并不是所有直读光谱仪的检测限都是一样的,不同厂家不同机型所达到的精度不同。
光谱分析是根据物质的光谱来鉴别物质,确定它的化学组成和相对含量,是一种灵敏快速的分析方法。生产过程的各个环节中,为了把控质量,保证成品符合出厂和验收要求,都离不开实时的化学成分检测。
直读光谱仪原理
直读光谱仪原理是样品经过电弧或火花,每种元素发射光谱谱线强度正比于样品中该元素含量,通过检测发射光谱强度的能量大小来分析各元素的含量。
原子发射光谱分析所采用的原理是用电弧(或火花)的高温使样品中各元素从固态直接汽化放电激发成原子蒸汽,当物质受到外界能量(电能和热能)的作用时,核外电子就跃迁到高能级,处于高能态(激发态)电子是不稳定的,激发态原子可存在的时间约为10-8秒,它从高能态跃迁到基态,或较低能态时,把多余的能量以光的形式释放出来。激发而发射出各元素的特征波长,因为每一种元素的基态是不相同的,激发态也是不一样的,所以发射的光子是不一致的,也就是波长不相同的。
依据波长可以决定是哪一种元素,这就是光谱的定性分析。另一方面谱线的强度是由发射该谱线的光子数目来决定的,光子数目多则强度大,反之则弱,而光子的数目又和处于基态的。
用光栅分光后,成为按波长排列的“光谱”,这些元素的特征光谱线通过出射狭缝,射入各自的感光器件,光信号变成电信号,经仪器的控制测量系统将电信号积分并进行模数转换,然后由计算机处理,并打印各元素的百分含量。
光电直读光谱仪虽然本身测量准确度很高,但测定试样中元素含量时,所得结果与真实含量通常不一致,存在一定误差,并且受诸多因素影响,有的材料本身含量就很低。有下面几种情况,在检测时可能产生误差。
,标样对光谱仪结果精度的影响,标样和试样的含量和化学组成不完全相同时,可能引起基体线和分析线的强度改变。
第二,标样与试样的物理性能不完全相同时,激发特征谱线会有差别从而产生系统误差。
第三,浇注的钢样经过退火,淬火,回火,热轧,锻压状态的钢样金属组织结构不相同时,测出的数据会有差别。
第四,熔炼过程中加入脱氧剂,去硫磷剂,混入未知合金元素,引起未知元素谱线的重叠干扰。
第五,样品的元素分布不均匀,导致分析结果不同。
以上几点是直读光谱仪精度产生误差的原因,若能避免,光谱仪的使用会更加方便。
虽然目前CCD还有一些不足之处,但是大家认为CCD在光电直读光谱仪中的应用是值得期待的。PMT到现在已经发展60多年了,是一种经典成熟的技术。而CCD技术正处于飞速的发展变化之中,可以预期CMOS(互补金属氧化物半导体)技术很快会应用于CCD当中,这些技术的不断发展会促使CCD发展到更高的水平。近些年CCD器件发展已经相当成熟,能够满足一般的分析要求,针对细分市场,各种特殊用途的CCD不断产生。CCD与PMT结合是目前解决全谱检测并满足微量和痕量分析的优选择,但同时满足两种类型检测器的采样控制和系统的完美结合目前仍然是该类仪器的制造难点。
所以说,CCD和PMT的存在,在目前为止都是合理且必要,而的COMS技术也在进入市场。对于客户来说,就是合理的选择一款自己合适的仪器,不要人云亦云。
钢研纳克目前的仪器基本是以CCD技术为主,COMS技术也基本成熟,并推出上市。
直读光谱仪常见的凹面光栅光谱仪有三种装置,即罗兰装置,帕邢装置和依格尔装置。
罗兰装置,光栅中心和感光板中心固定在可动的连杆两端,连杆的长度为光栅的曲率半径,其两端可沿互相垂直的导轨自由滑动,狭缝装有导轨的交点上。在连杆移动过程中,狭缝、光栅和感光板始终在一罗兰圆上。这种装置的缺点为:只能用移动连杆来读取不同波段的光谱。
帕邢装置的罗兰圆为一圆形钢轨,狭缝和光栅都固定在钢轨上,感光板环绕钢轨安装有一排底板架因而可同时拍摄几组光谱,其优点是稳定性高。
依格尔装置,其入射角等于衍射角,其中缝光源安装在底板架的正上方,要改变波段可将光栅和底板沿相反的方向转动同一角度,改变二者间的距离,使之始终位于罗兰圆上。该装置优点为体积紧凑,通常用于真空紫外光谱仪。
自古以来,人们都有一个毛病,非要分出个子丑寅卯,非左即右。在光谱仪检测行业,也存在着:检测器推陈出新,更新换代,CCD定能取代PMT,COMS完败CCD的论调。
检测器作为光谱仪的核心部件,其技术的发展进步往往引领着光谱仪的发展。电荷耦合元件(CCD)技术的应用是光电直读光谱仪的一个技术发展方向,采用CCD将会降低光电直读光谱仪的生产成本及减小仪器体积。其次CCD的优点是全谱,可以很方便地增加检测元素的种类。此外,CCD具有良好稳定性和较长的使用寿命,CCD型光电直读光谱仪可以实现激发样品时自动完成波长校准,不再需要定期进行校准,采用CCD技术可实现模块化、易于校准、抗振动。
小编在几年前的单位从事检测工作,当年PMT还是主流,仪器笨大。因为伊始购置仪器的时候对这方面不是很懂,初始只为了检测铝基材质,然后随着工作的深入,需要检测铁基的时候,厂家说加费用,要拆机装通道。“EXCUSE ME?”。
现在不比当年,运用CCD技术的仪器已然占据大部分市场。但,CCD又真的能取代PMT的地位么?
和传统的光电倍增管(PMT)技术相比,CCD发展较晚,作为新型检测器件,还存在一定的局限性。首先CCD没法如PMT那样每个通道都做优化。其次,CCD在应用中为了降低暗电流需要降温,这与光学系统需要恒温相矛盾。CCD目前还无法应用一些高速采样技术,因而在痕量元素分析方面性能不及PMT。CCD的信噪比不如PMT,其次如何保证多块CCD的一致性,以及处理多块CCD之间的接收空白区,也是一个问题。此外,当前CCD技术已经可以满足中端分析应用水平,但在短波元素分析、低含量元素分析、短期分析精度和长期精度方面和PMT还是有差距。
其实很明显的一个概念,就是实验室的仪器往往是采购的PMT,普通的厂家CCD就够了。